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ABSTRACT

Rotation minimizing frames (RMFs) have the property of

minimum twist which makes them useful for computer

graphics, swept surface or generalised cylinder construc-

tions, motion design and control in computer animation and

robotics, streamline visualization, and tool path planning in

CAD/CAM. Recent advances in two main research topics,

polynomial helices and rational rotation minimizing frame

(RRMF) curves, in the theory of Pythagorean-hodograph

(PH) curves let us study RRMFs on quintic helices. We

first give a condition on a polynomial helix of any degree

to have an RRMF, which leads a simplification of rational

approximation to RMFs on monotone-helical PH quintics.

Then we prove the nonexistence of RRMFs on both general

and monotone quintic helices.

KEY WORDS

Quintic helices, rotation minimizing frames.

1 Introduction

A parametric curve is called a Pythagorean-hodograph

(PH) curve if it has a polynomial speed at each instant.

The theory of PH curves is a much studied research topic

in Computer Aided Geometric Design (CAGD) because of

their useful properties. Recent developments in this topic

are documented in the book [1], for instance. Polynomial

helices and rational rotation minimizing frame curves are

two important subclasses of PH curves. Although both

topics have been studied by many authors so far there is

not much work which combines the two. The aim of the

present paper is to start a line of research in this direction

by giving a special emphasis to helical PH quintic curves.

A polynomial helix is a PH curve if its curvature as being a

polynomial equal to its torsion, which is also a polynomial,

times a constant. On the other hand, it is known that a

cubic PH curve is a helical curve [1]. Nevertheless, quintic

curves form a larger class than their subfamily of quintic

helices. We analyse two kinds of PH quintic helices to

have a rational rotation minimizing frame (RRMF): the

first type is the class of monotone-helical PH quintics,

whose hodographs have components with a common

quadratic factor; the second type is the class of general

helical PH quintics, whose hodographs are irreducible.

For background, the reader may like to look at some

references from the literature. For example, in [2],

characterizations of quintic helical curves are studied in

detail. A helicity condition of polynomial helices of any

degree is then given from a geometric point of view in

[3]. For a more detailed study on quintic and degree seven

polynomial helices and double PH curves we refer to [4, 5].

The rotation-minimizing frames (RMFs) are proved to be

useful in animation, robotics path planning and control,

modeling of swept surfaces or generalised cylinders, and

manufacturing applications [6], [7]. To illustrate minimum

twist of an RMF, we provide Figures 1 and 2 which give a

rotation minimizing frame vector and the binormal vector

of a PH quintic curve. Especially rational RMFs are useful

for computational purposes. In practice one often looks for

curves with an adapted frame having minimal rotation. In

[8], it is shown that cubic PH curves do not have RRMFs.

In the same work, a general condition for a PH curve to

have an RRMF is also given. Quintic RRMF curves are

identified in [9], then more symmetric characterizations of

these curves are given in [10]. RRMF curves of arbitrary

degree are studied in another recent work [11].

As we mentioned before, the study of helical PH curves

and the study of rational minimizing frames are quite well

developed but these two subjects together have not been

explored too much. The only nonexistence of cubic PH

curves is given in [8]. By the aid of recent developments in

helical quintics [2, 12], and quintic RRMF curves [9, 10]

we are equipped to study the conditions of the existence of

RRMF on helices. Our observations give us the results on

the nonexistence of RRMFs on quintic helices.

The present paper is organized as follows. Section 2 intro-

duces definitions of and basic results on PH curves, PH he-

lices, RMF and RRMF curves in quaternion and Hopf map

representations. In Section 3 we give a necessary and suf-

ficient condition for helices of any degree to have RRMFs.

Section 4 is devoted to the main results of this paper, where

the case of quintic helical curves have been throughly ex-
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Figure 1. A Rotation minimizing frame of a PH quintic

curve. Only one of the normal vectors is shown.

amined resulting in the nonexistence of such frames. Sub-

sequently in Section 5 we draw some conclusions.

2 Background

In this section we review the preliminary material which

we use in the main part of the paper.

2.1 Quaternion and Hopf Map Form of PH Curves

A polynomial curve r(t) is called a Pythagorean hodo-

graph (PH) curve if its hodograph r′(t) has a polynomial

norm. Namely, if in coordinates

r(t) = (x(t), y(t), z(t)), (1)

then

|r′(t)| =
√

(x′(t)2 + y′(t)2 + z′(t)2 = σ(t) (2)

for some polynomialσ(t). This implies that there exist four

polynomials u(t), v(t), p(t) and q(t) such that

x′(t) = u(t)2 + v(t)2 − p(t)2 − q(t)2,

y′(t) = 2 [u(t) q(t) + v(t) p(t)],

z′(t) = 2 [v(t) q(t)− u(t) p(t)],

(3)

with the parametric speed given by

σ(t) = u(t)2 + v(t)2 + p(t)2 + q(t)2. (4)

We will use both the quaternion and Hopf map rep-

resentations of PH curves which we recall here. A quater-

nion is a linear combination of four basis elements 1, i, j,k
which satisfy the product rules

i2 = j2 = k2 = −1 (5)

Figure 2. The Frenet-Serret frame of the same curve with

Figure 1. Only binormal vector is shown.

and “1” is the usual real unit. Then, non commutativity of

the quaternion product follows from the equations

i j = −j i = k, j k = −k j = i,

k i = −i k = j.
(6)

In quaternion terms r′(t) can be represented by the product

r′(t) = A(t) iA∗(t), (7)

for the quaternion polynomial

A(t) = u(t) + v(t) i + p(t) j+ q(t)k, (8)

and A∗(t) denotes the quaternionic conjugate of A(t).
From [13] we know that the spatial PH curve (3) can be

generated from two complex polynomials through the Hopf

map

H : C× C → R
3,

defined by H(α, β) = (2α, β̄, |α|2 − |β|2). The Hopf map

representation of r′(t) is then given by the expression

r′ = (|α|2 − |β|2, 2Re(α β̄), 2 Im(α β̄)). (9)

The complex polynomials α(t), β(t) and real polynomials

u(t), v(t), q(t), p(t) have the relations

α(t) = u(t) + v(t) i,

β(t) = q(t) + p(t) i.
(10)

This can be seen by identifying the unit basis vector i and

the complex unit i [1]. Therefore, the quaternionic curve

given in (8) becomes

A(t) = α(t) + β(t)k. (11)
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A quintic PH curve is a PH curve of degree five,

so in both quaternion and Hopf map representations one

uses quadratic quaternion curves and complex curves re-

spectively. If the polynomials x′(t), y′(t), z′(t) and the

parametric speed σ(t) share a common linear factor, then

r(t) is called a monotone-helical PH quintic [2]. If

gcd(x′(t), y′(t), z′(t)) = constant, then r(t) is called a

general helical PH quintic [2]. A quintic PH curve r(t)
can be expressed in terms of quadratic quaternion curves

by

A(t) = (1− t)2A0 + 2(1− t) tA1 + t2A2, (12)

for three constant quaternions A0,A1 and A2 [10]. Or, in

Hopf map form (9) by two quadratic complex polynomials

α(t) =(1− t)2α0 + 2 (1− t)t α1 + t2α2,

β(t) =(1− t)2β0 + 2 (1− t)t β1 + t2β2.
(13)

These forms are very useful in formulating quintic helices

[2] and RRMF quintic curves [1]. We make use of these

forms (12) and (13) to prove our results.

2.2 PH Helices

Helical curves form an important class of PH curves. A

helix is a curve whose unit tangent makes a constant angle

with a constant vector u. So, r(t) is a helix if and only if

r′(t) · u = |r′(t)| cosψ, (14)

with ψ constant. Recall that this definition is equivalent to

κ/τ = constant [14], where κ and τ are the curvature and

torsion of the curve respectively. It is known that, a helical

polynomial curve is a PH curve, whereas converse is not,

in general, true [1]. Cubic PH curves are helices but, for

example, helical PH quintic space curves form a subset of

all spatial PH quintics.

A geometric characterization of helical PH curves of

any degree is given by Monterde [3] as follows: a PH curve

r(t) is a helical curve if and only if α(t)/β(t) traces a circle

or a straight line, here α(t) and β(t) are complex polyno-

mials as in the Hopf map representation (cf. (10)). For

quintic helices there are particular results which we recall

below.

The following result will be used to prove the nonex-

istence of RRMFs on general helical PH quintic curves.

Theorem 1 ([2]). A sufficient condition for the hodograph

(7) to yield a helical PH quintic is that the quaternions

A0,A1,A2 in (12) are linearly dependent.

As pointed out in [2], if A0,A1 and A2 are linearly

dependent, namely,

A1 = c0 A0 + c2 A2 (15)

for some c0, c2 ∈ R, then A(t) is a straight line. Also note

that (15) is not satisfied, in general, by monotone-helical

PH curves [2].

If r(t) is a monotone-helical PH curve then α(t) =
h(t) a(t) and β(t) = h(t) b(t) for linear complex polyno-

mials a(t), b(t) and h(t). Then PH helical quintic curve is

given by

r′(t) = |h(t)|2(2a(t)b̄(t), |a(t)|2 − |b(t)|2). (16)

with the identification R3 ≃ C × R. The following prop-

erty of a regular monotone-helical quintic curve will be of

importance; regular means that r′(t) 6= 0 for each t.

Theorem 2 ([12]). Let r(t) be a regular monotone-helical

quintic curve such that r′(t)/|r′(t)| = (1, 0, 0). Then there

exists a unique triple of linear polynomials a(t), b(t) = t
and h(t) of (16) such that h(0) > 0 and Im(h′(0)) > 0.

The proofs of Theorem 1 and Theorem 2 can be found

in the cited references.

2.3 Rotation Minimizing Frames

An adapted frame on a space curve r(t) is an orthonormal

basis for R3 such that, at each curve point, the unit tangent

t = r′(t)/σ with speed σ = |r′(t)|, is one basis vector, and

the other two basis vectors span the normal plane. The most

canonical one is the Serret-Frenet frame {t,n,b} given by

[15],

t =
r′(t)

σ
,

b =
r′(t)× r′′(t)

|r′(t)× r′′(t)| ,

n = b× t.

(17)

Then Serret-Frenet equations giving the change of the

Serret-Frenet frame read

t′ = σ κn,

n′ =− σ κ t + σ τ b,

b′ =− σ τ n,

(18)

where κ is the curvature and τ is the torsion given by the

expressions

κ =
|r′(t)× r′′(t)|

σ3
,

τ =
(r′ × r′′) · r′′′
|r′(t)× r′′(t)|2 .

(19)

There are many other adapted frames associated with

a given space curve r(t), and among them the rotation min-

imizing frames are the ones which minimize the amount of

rotation along the curve. Before recalling the definition we

first give the following. The variation of a frame {t, f1, f2}
defined on a curve r(t) is given by its vector angular veloc-

ity ω with the relations

t′ = ω × t, f ′
1
= ω × f1, f ′

2
= ω × f2. (20)
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The magnitude and direction of ω specify the frame angu-

lar speed and rotation axis of the frame {t, f1, f2} [9]. We

can write the angular velocity as linear combination of the

frame vectors:

ω = ω0 t+ ω1 f1 + ω2 f2. (21)

Here one computes

f1
′ = ω0 f2 − ω2 t, (22)

which implies that ω0 = f2 · f ′
1
= −f1 · f ′

2
. Similarly the

other components are obtained to be ω1 = t · f ′
2
= −f2 · t′

and ω2 = f1 · t′ = −t · f ′
1
.

The characteristic property of an RMF is that its an-

gular velocity has no component along t, i.e., ω · t ≡ 0.
Equivalently, another definition of an RMF is [8] that

f ′
1
· f2 ≡ 0, (23)

is a necessary-and-sufficient condition for the frame to be

rotation minimizing. Then an RMF satisfies the equations

t′ =σ(ω2 f1 − ω1 f2),

f ′
1
=− σ ω2 t,

f ′
2
= σ ω1 t.

(24)

Here the pair f1 and f2 is not unique; there exist a one-

parameter family of RMFs corresponding to different sets

of initial positions of f1 and f2.

2.4 RRMF Curves

For computational purposes, it is desired that an adapted

frame is rational, such as a rational rotation minimizing

frame (RRMF). Whereas not every PH curve admits an

RRMF. For instance, it is shown by Han [8] that a cu-

bic PH curve does not admit an RRMF. It is also shown

in [8] that a PH curve (3) admits an RRMF if and only

if there exist relatively prime polynomials a(t) and b(t)
with gcd(a(t), b(t)) = constant such that the components

u, v, p, q of A satisfy

u v′ − u′ v − p q′ + p′ q

u2 + v2 + p2 + q2
=
a b′ − a′ b

a2 + b2
. (25)

For a quintic PH curves we will make use of the fol-

lowing recent results which give the conditions to have an

RRMF.

Theorem 3. ([10]) A PH curve r(t) with r′(0) = (1, 0, 0)
has an RRMF if and only if the Bernstein coefficients in (13)

of the quadratic polynomialsα(t) and β(t) in the Hopf map

representation (9) can be expressed in terms of two complex

parameters ζ, η and one real parameter ξ in the form

(α0, α1, α2) =(1, ζ, |ζ|2 − |η|2 + ξ i),

(β0, β1, β2) =(0, η, 2 ζ̄ η).
(26)

Note that a more general form of this result is given

in [10] but the above result is enough for our purpose.

There is a constraint on the quaternion coefficients

A0,A1 and A2 of spatial PH quintics to have an RRMF.

Theorem 4. ([10]) A general spatial PH quintic specified

by (7) and (12) has an RRMF if and only if the quaternion

coefficients A0,A1 and A2 satisfy

A0 iA∗

2
+A2 iA∗

0
= 2A1 iA∗

1
. (27)

3 RRMFs on Helices of ny Degree

We aim to give results on the nonexistence of RRMFs on

quintic helices, but we first give a result for curves of any

degree whose proof is similar to the one in [8] to obtain the

equation (25).

Lemma 1. Let a PH curve r(t) given by (3) be a helical

curve with κ/τ = c and c ∈ R. Then r(t) has an RRMF

if and only if there exist relatively prime polynomials a(t)
and b(t) satisfying

√
ρ

c σ
=
a b′ − a′ b

a2 + b2
, (28)

where

ρ =(u p′ − u′ p+ v q′ − v′ q)2

+(u q′ − u′ q + v p′ − v′ p)2.
(29)

Proof. Suppose that {t, f1, f2} is a frame adapted to r(t).
As r(t) is a helix, its Serret-Frenet frame is rational [16].

Then, one has

f1 =
a2 − b2

a2 + b2
n− 2 a b

a2 + b2
b,

f2 =
a2 − b2

a2 + b2
b+

2 a b

a2 + b2
n,

(30)

for some relatively prime polynomials a(t) and b(t), where

{t,n,b} is the Serret-Frenet frame. If {t, f1, f2} is an

RRMF then it also satisfies (23). Hence by using the equa-

tions (23) and (30), and considering the Serret-Frenet equa-

tions (18) one obtains

τ σ =

(

a2 − b2

a2 + b2

)(

2 a b

a2 + b2

)

′

−
(

a2 − b2

a2 + b2

)′ (

2 a b

a2 + b2

)

.

(31)

After some algebra it is obtained that

τ σ = 2
a b′ − a′ b

a2 + b2
. (32)

On the other hand, for the curvature of a PH curve

κ = 2

√
ρ

σ2
(33)

a
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is satisfied [1]. Also we know that

κ

τ
= c (34)

for some c ∈ R. Then combining the equations (32), (33)

and (34) gives the equation (28).

Conversely, suppose that the equation (28) is satisfied.

Then by the equations (30-34) {t, f1, f2} forms an RRMF.

The equation (28) may be useful for further results

on existence or nonexistence of RRMFs on polynomial he-

lices, nevertheless we follow the methods of [10] and [12]

for the quintic case in the next section.

4 Nonexistence of RRMFs on Quintic He-

lices

Here we give one of our nonexistence results on helical PH

quintics.

Theorem 5. If a (regular) general helical PH quintic sat-

isfying (15) has an RRMF, then it is a planar curve.

To prove Theorem 5 we need the following basic re-

sult for which we supply a proof for completeness.

Lemma 2. A polynomial space curve r(t) is a planar curve

if

r′(t) = f(t)u+ g(t)v (35)

for two polynomials f(t), g(t) and two constant vectors

u,v ∈ R3.

Proof. Differentiating the equation (35) gives that three

vectors r′(t), r′′(t), r′′′(t) lie on the plane spanned by two

constant vectors u and v. Then by the equation (19) the

torsion of r(t) is identically vanishing which concludes the

proof.

Proof of Theorem 5. Let r(t) be a quintic PH curve satis-

fying (15). If r(t) has an RRMF then the quaternion coef-

ficients A0,A1 and A2 satisfy (27). Substituting (15) into

(27) one computes

A0 iA∗

2
+A2 iA∗

0
=

= 2 (c0 A0 + c2 A2) i (c0A∗

0
+ c2 A∗

2
),

=
2 c2

0

1− 2 c0 c2
A0 iA∗

0
+

2 c2
2

1− 2 c0 c2
A2 iA∗

2
,

(36)

which gives A0 iA∗

2
+ A2 iA∗

0
as a linear combination of

A0 iA∗

0
and A2 iA∗

2
. By using this fact and by the equa-

tions (7), (12) and (15) we have r′(t) as

A iA∗ = ((1− t)2A0 + 2 t(1− t)A1

+ t2A2) i ((1− t)2A∗

0
+ 2 t(1− t)A∗

1
+ t2A∗

2
).

(37)

Then if we rearrange the right hand side, the terms without

A0 iA∗

0
and A2 iA∗

2
are obtained to be

(2 t(1− t)3c2 + (4 c0 c2 + 1) t2 (1− t)2

+2 t3(1− t)c0)(A0 iA∗

2
+A2 iA∗

0
),

(38)

which is also a linear combination of the same two constant

vectors A0 iA∗

0
and A2 iA∗

2
, implying that r(t) is planar

by Lemma 2.

For monotone-helical quintics we have a nonexis-

tence result of RRMFs.

Theorem 6. There is not an RRMF on a (regular)

monotone-helical PH quintic that is not a straight line.

Proof. One can transform the curve to a special form by

rotations, translations and a scaling into a curve which sat-

isfies r′(0) = (1, 0, 0). It is known by [17] that RMFs are

preserved by Möbius transformations, such as rotations and

translations, so working with a curve with r′(0) = (1, 0, 0)
is enough for the general. Now we can employ Theo-

rems 2 and 3 together. Namely, if we use the property to

be a monotone-helical quintic from Theorem 2, we know

that a(t) = a0(1 − t) + a1 t, b(t) = t, and h(t) =
h0(1 − t) + h1 t, where a0, a1, h0 h1 are complex num-

bers. This gives us

α(t) = h(t) a(t) = a0h0(1 − t)2

+ (a1h0 + a0h1)(1− t)t+ a1h1t
2.

(39)

Similarly for complex polynomial β(t), we have

β(t) = h(t) b(t) = h0 t (1− t) + h1 t
2. (40)

After comparison between equation (13) and these expres-

sions, it is easily seen that the equations

α0 = a0 h0, 2α1 = a1 h0 + a0 h1,

α2 = a1 h1, β0 = 0,

2β1 =h0, β2 = h1.

(41)

hold. From Theorem 3, we have further restrictions,

a0h0 =1, a1 h0 + a0 h1 = 2 ζ,

a1 h1 = |ζ|2 − |η|2 + ξ i, β0 = 0,

h0 =2 η, h1 = 2 ζ̄ η.

(42)

Here ζ, η are complex numbers and ξ is a real number.

Finally, the equations (42) should be consistent with each

other. We can choose the following three equations,

a1 h1 = |ζ|2 − |η|2 + ξ i,

a1 =
2 ζ − ζ̄

2 η
, h1 = 2 ζ̄ η.

(43)

Then, we obtain

2 ζ ζ̄ − ζ̄ ζ̄ = |ζ|2 − |η|2 + ξ i. (44)

If take ζ = ζ1 + ζ2 i, we get

2 ζ2
2
+ 2 ζ1 ζ2 i = −|η|2 + ξ i. (45)

The calculation gives us η = 0 which contradicts with

equations (42). Recall that η = 0 implies that r(t) is a

straight line [10].
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5 Conclusion

In this paper, a characterization of regular quintic helical

PH curves that allow RRMFs has been given. We want

to point out here that the formula given in Lemma 1 sug-

gests a simplification of rational approximation to RMFs

on monotone-helical quintic PH curves, which will be re-

ported in a future paper. As the main result, we have shown

that quintic helices cannot have RRMFs. Although we

do not have a rigorous proof we predict that there are not

RRMFs on seven degree PH helices. We can see this fact

from Theorem 1 in [3] which gives a condition for a poly-

nomial curve to be a helix and an equation giving a condi-

tion for a curve to have RRMFs in the paper [11]. There-

fore if there is not an RRMF on a curve an approximation

of RRMFs can be done as in [18]. We plan to develop exist-

ing rational approximation methods to RMFs for especially

quintic helices and apply it to sweep surface modeling and

rigid body design.
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