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Rotation minimizing frames on monotone-helical PH quintics:
approximation and applications to modeling problems
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Abstract

A rotation minimizing frame (RMF) {t, f1, f2} of a
curve in 3-space consists of the tangent t and two
normal vectors f1 and f2 which rotate as little as pos-
sible around t. Having the property of minimum twist
makes RMFs attractive in computer graphics, swept
surface constructions, motion design and similar ap-
plications. Recently we have shown that there is not
any rational RMF (RRMF) on monotone quintic he-
lices, so this motivates to develop a rational approx-
imation to RMFs. It is shown that rational approx-
imation to RMFs on monotone-helical Pythagorean-
hodograph (PH) quintics is computationally cheap,
then it is applied to profile surface modeling and rigid
body design.

1 Introduction

1.1 General context

A parametric curve r(t) = (x(t), y(t), z(t)) is called
a Pythagorean-hodograph (PH) curve if its speed is a
polynomial [2]. The theory of PH curves is a much
studied research topic in Computer Aided Geometric
Design (CAGD) because of their useful properties. An
adapted frame on a space curve r(t) is an orthonormal
moving frame {t, f1, f2} such that, t is the unit tan-
gent r′(t)/|r′(t)|, and the other two vectors span the
normal plane. Rotation minimizing frames (RMFs)
have minimum twist that makes them distinguished
among adapted frames. RMFs are used in anima-
tion, robotics applications, the construction of swept
surfaces [10] where the axis of a tool should remain
tangential to a given spatial path while minimizing
changes of orientation about this axis.

1.2 Motivation

It is easy to compute exact derivation of RMFs on
spatial PH curves [2]. Further, in practical applica-
tions, especially rational RMFs (RRMFs) are useful
for computational purposes. The only curves having
rational adapted frames are PH curves, since the only
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PH curves have rational unit tangent vectors. Be-
sides, the arc lengths of PH curves can be computed
precisely, and it can formulate real-time interpolators
to drive multi-axis CNC machines along curve paths,
at fixed or varying speeds from their exact analytic
descriptions [6].

In the family of PH curves, polynomial helices have
remarkable interest, particularly quintic helices. The
relationship between such curves and some problems
in the realm of computer-aided design of curves and
surfaces show that the suitable curves are helical PH
quintics for real applications [3].

1.3 Problem Statement

Having observed that in general PH quintic helices
cannot have RRMFs, we aim at making rational ap-
proximations to RMFs. We focus on monotone-helical
PH quintics, i.e. curves whose hodograph has coordi-
nates with a common factor, say h. On a monotone-
helical PH quintic curve r(t), RMFs can be computed
easily since there is a simplification in the integral
giving the angle θ between Frenet-Serret frame (FSF)
and RMFs. Because, θ is given by

θ(t)− θ0 = −
∫
τ σ dt, (1)

where σ = |r′(t)| and τ is the torsion, and for
monotone-helical PH quintics the integrand τ σ turns
out to be 2

gc , with σ = h g and c is the helicity con-
stant. Applying this idea to related topics, such as
sweep surface modeling and rigid body motion design,
is the subject of this work.

1.4 Related Work

In the previous work [11], we showed that there does
not exist RRMFs on monotone-helical PH quintics.

Theorem 1 [11] There is not an RRMF on a (regu-
lar) monotone-helical PH quintic that is not a straight
line.

We also gave a condition (9) on a polynomial helix
of any degree to have an RRMF. This condition leads
to a simplification of rational approximation to RMFs
on monotone-helical PH quintics. For PH cubic curves
and more generally PH curves rational approximation
to RMFs was studied in [5, 9].
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1.5 Overview of the Results

The present paper is organized as follows. Sec-
tion 2 introduces definitions of and basic results on
monotone-helical PH quintics, RMFs, RRMFs, and
profile surfaces. In Section 3 we discuss a minimax
rational approximation to an RMF on a monotone-
helical PH quintic. Then we discuss applications to
sweep surface modeling in the same section and to
rigid body motion planning in Section 4. Subse-
quently in Section 5 we conclude with remarks about
our future considerations.

2 Background

In this section we review the preliminary material
which we use along the paper.

2.1 Monotone-Helical PH Quintics

In Hopf map C×C→ R3 representation, a PH curve
r(t) is defined by its hodograph

r′(t) = (2α(t) β̄(t), |α(t)|2 − |β(t)|2), (2)

where

α(t) = u(t) + v(t) i and β(t) = q(t) + p(t) i, (3)

are some complex polynomials, and the identification
R3 ' C× R is assumed [2].

A monotone-helical PH curve r(t) is a quintic
PH curve whose hodograph have components with
a common quadratic factor, then α(t) = h(t) a(t)
and β(t) = h(t) b(t) for linear complex polynomials
a(t), b(t) and h(t). Then the helical PH quintic curve
(2) is given by

r′(t) = |h(t)|2(2 a(t) b̄(t), |a(t)|2 − |b(t)|2). (4)

Example [2]: Let us consider the monotone-helical
PH quintic curve r(t) = (x(t), y(t), z(t)), where

u(t) = t2 − 3 t, v(t) = t2 − 5 t+ 10,

p(t) =− 2 t2 + 3 t+ 5, q(t) = t2 − 9 t+ 10.
(5)

Here a common factor of the components
x(t), y(t), z(t) is h(t) = t2 − 2 t + 5. The he-
licity constant is obtained to be c = κ/τ = 5

√
2/3,

where κ, τ are the curvature and torsion, respectively.
We will make use of this curve to demonstrate our
approximation results.

2.2 Rotation Minimizing Frames

The most canonical adapted frame is the FSF
{t,n,b}. There are many other adapted frames asso-
ciated with a given space curve r(t), and among them
the RMFs are the ones which minimize the amount

of rotation along the curve. The variation of a frame
{t, f1, f2} defined on a curve r(t) is given by its vec-
tor angular velocity ω = ω0 t + ω1 f1 + ω2 f2 with the
relations

t′ = ω × t, f ′1 = ω × f1, f ′2 = ω × f2. (6)

The characteristic property of an RMF is that its an-
gular velocity has no component along t, i.e.,

ω · t ≡ 0. (7)

As we consider a helix r(t), its FSF is rational [2].
Observe that an RMF is given by a rotation in the
normal plane(

f1
f2

)
=

(
− cos θ sin θ

sin θ cos θ

)(
n
b

)
, (8)

where (1) with the integration constant θ0 [2]. There-
fore an RMF is not rational in general.

2.3 Rational Frames of Quintic PH Helices

A general condition on helices of any degree to have
RRMFs is also given in [11].

Lemma 2 [11] Let a PH curve r(t) be a helical curve
with κ/τ = c and c ∈ R. Then r(t) has an RRMF
if and only if there exist relatively prime polynomials
µ(t) and ν(t) satisfying

√
ρ

c σ
=
µ ν′ − µ′ ν
µ2 + ν2

, (9)

where

ρ = (u p′ − u′ p+ v q′ − v′ q)2+

(u q′ − u′ q + v p′ − v′ p)2.
(10)

The proof of Lemma 2 gives an idea of a simplifica-
tion of rational approximation to RMFs on monotone-
helical PH quintic curves. It will be detailed in the
next section.

2.4 Profile Surfaces

A profile surface is a sweep surface generated by an
RMF. More explicitly, it has a parametric represen-
tation

S(s, t) = r(t) + f1(t) c1(s) + f2(t) c2(s), (11)

where r(t) is the spine curve with parameter t ∈
[t0, t1] ∈ R, c(s) = (c1(s), c2(s))T is the cross sec-
tion or profile curve with parameter s ∈ [s0, s1] ⊂ R,
and {t, f1, f2} is an RMF along r(t).

If the cross-section curve is a straight line, then
the profile surface is a developable surface [9]. This
implies that they are flat surfaces, i.e. they have van-
ishing Gauss curvature K = 0. In the next section
we obtain a rational approximation of an RMF on a
monotone-helical PH quintics.
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3 Minimax Rational Approximation on monotone-
helical PH quintics

In this section we will make a minimax rational ap-
proximation on monotone-helical PH quintics by us-
ing Mathematica. A (m, k) degree rational function
is the ratio of a degree m polynomial to a degree k
polynomial. The error of minimax rational approxi-
mation is the difference between the function and its
approximation w.r.t. Euclidean norm. The aim of
minimax rational approximation is to minimize the
maximum of the relative error from the polynomial
curve.

Let f(t) be continuous on a closed interval [t0, t1].
Then there exists a unique (m, k) degree rational poly-

nomial a(t)
b(t) , called the minimax rational approxima-

tion to exact function f(t), that minimizes

ε(a(t), b(t)) = max
t0<t<t1

| f(t)− a(t)
b(t) | . (12)

3.1 Minimax Rational Approximation of RMFs on
Monotone-Helical PH Quintics

Nonexistence of RRMFs on a monotone-helical PH
quintic curve motivates an approximation of RRMFs
which can be done as in [5] with further simplifications
as indicated in the following. Standard parametriza-
tion of circle is

(sin θ, cos θ) =

(
2f

1 + f2
,

1− f2

1 + f2

)
, (13)

where f = tan θ
2 . Then, one can make a rational ap-

proximation by

f(t) = tan
θ(t)

2
= − tan

(∫
τ σ

2
dt

)
' a(t)

b(t)
, (14)

for some relatively prime polynomials a(t) and b(t),
which gives a rational frame(

f̃1
f̃2

)
= − 1

a2 + b2

(
a2 − b2 −2 a b

2 a b a2 − b2
)(

n
b

)
. (15)

For a quintic helix, the integrand τ σ is a rational
function of degree (2, 4), while for monotone-helical
PH quintic curves this simplifies to (0, 2). This is be-
cause the monotone-helical PH curve identities hold:

σ = h g and ρ = h2, (16)

where h = gcd(x′, y′, z′) [4]. Furthermore we put to-

gether the curvature of a PH curve [2] κ = 2
√
ρ

σ2 ,
helicity condition c = κ/τ, and monotone-helical con-
ditions (16) in the following computation:

τ σ =
κ

c
σ = 2

√
ρ

c σ2
σ =

2

g c
. (17)
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Figure 1: Error for the RMF condition (7).

Then from equation (1), we get

θ

2
= −

∫
1

c g
dt. (18)

The integral in (18) gives a simplification of computa-
tions when making the approximation given in (14).

Example: Let us consider the monotone-helical PH
quintic curve (5). After applying the minimax ratio-
nal approximation with error ε = −0.000172464, the
rational approximation to exact function f(t) is then

a(t)

b(t)
=
−0.469264 + 0.225286 t

1− 0.304786 t
. (19)

This result yields a good RRMF approximant as can
be seen by Figure 1 which shows the error of the RMF
condition (7).

3.2 Minimax Rational Approximation of Profile
Surfaces

Rational approximation of RMF can be used to gen-
erate profile surfaces with rational representation. If
the profile curve c(s) is chosen to be a straight line
then the rational approximation to the profile surface
is expected to have Gauss curvature close to zero val-
ues.

Example: Consider two sweep surfaces,

S1(s, t) = r(t) + (− 1
5 s+ 5) f̃1 + (10 s− 1

2 ) f̃2,

S2(s, t) = r(t) + (− 1
5 s+ 5)n + (10 s− 1

2 )b,
(20)

generated by the rational approximation to the RMF
(left) and by the FSF (right) of the monotone-helical
PH quintic given in (5), see Figure 2. The Gaussian
curvature K̃ can be used as an accuracy criterion.
Since the cross-section curve

c(s) = (− 1
5 s+ 5, 10 s− 1

2 )T (21)

in this example is a straight line, the Gauss curvature
of a profile surface is vanishing. For profile surface
S1(s, t), minimum and maximum values of the Gauss
curvature are

K̃min(0.899997, 1) =− 9.76359× 10−11,

K̃max(0.899992, 14.7928) =− 1.11723× 10−11.
(22)
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Figure 2: Sweep surfaces S1(s, t) and S2(s, t), gener-
ated by the rational approximation to the RMF (left)
and by the FSF (right).

Figure 3: Rigid Body with initial configuration on a
monotone-helical PH quintic curve r(t) (left) and the
same curve with rigid body motion (right).

Our approximation K̃ is between the values K̃min and
K̃max which are close to zero. Therefore this criterion
shows us that our approximation gives good results.

4 Rigid Body Motion Design

A rigid body motion can be modeled as the motion
of an adapted frame. As they make minimum twist,
RMFs are very useful in rigid body motion design,
however computation of these frames requires to in-
tegrate complicates functions. For PH curves the in-
tegral in (1) is known to be integrated by elementary
functions [2]. We can further see by (18) that this in-
tegration is very useful from a computational point of
view. This considerable feature of monotone-helical
PH quintics can be employed in the following.

Assume that an initial point p0 and a final point p1,
and an initial frame at p0 are given. We illustrate that
rigid body motion design problem in Figure 3. To find
a trajectory satisfying these initial data, a monotone-
helical PH quintic can be obtained under some more
suitable conditions, then it is an easy task to compute
an RMF which aligns with the initial frame at p0.
For this purpose interpolation method for monotone-
helical PH quintics given in [7] can be used.

5 Conclusions and Future Work

Rational approximation of RMFs on monotone-helical
PH quintics is studied. It is observed in this work that

the integrand (1) which is used to compute RMFs is
a rational function of degree (0,2). This leads to a
simplification in rational approximation to RMFs as
we touch upon in this work. Moreover, it is pointed
out that several applications can be done to modeling
problems such as sweep surfaces and rigid body de-
sign. It is worth to mention here that this distinctive
feature is special for monotone-helical PH quintics.

Future work will be to improve and apply the obser-
vations outlined above. One concrete question arising
is the following. When we are modeling rigid body
motion, there exist singular points on the monotone
curve. We will search for a method to remove these
singularities of monotone-helical PH quintics.
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